
N-Channel MOSFET

Features

- ◆ R_{DS(ON)} Max 5.0ohm at V_{GS} = 10V
- ◆ Gate Charge (Typical 9.0nC)
- ◆ Improve dv/dt capability, Fast switching
- ◆ 100% avalanche Tested

This MOSFET is produced using advanced planar strip DMOS technology. This latest technology has been especially designed to minimize on-state resistance have a high rugged avalanche characteristics. These device are well suited for high efficiency switch mode power supply active power factor correction. Electronic lamp based on half bridge topology

Absolute Maximum Ratings (T_J = 25℃ unless otherwise specified)

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		600	V
	Drain Current T _C =25℃		2	۸
I _D	T _C =100 ℃		1.35	A
V _{GSS}	Gate-Source Voltage		± 30	V
I _{DM}	Drain Current pulse	(Note 1)	8	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	130	mJ
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.55	mJ
dv/dt	Peak diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation T _C =25 ℃		23.6	W
T _j , T _{STG}	Operation and Storage Temperature range		-45 ~ 150	$^{\circ}$

SFF2N60-KR

Thermal Characteristics

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance Junction to Case	5.3	°C/W
$R_{\Theta CS}$	Thermal Resistance Case to Sink Typ.	0.5	°C/W
$R_{\Theta JA}$	Thermal Resistance Junction to Ambient	62.5	°C/W

Electrical Characteristics (TC = 25℃ Unless otherwise noted)

Symbol	Items	Conditions	Ratings			l lmit
		Conditions	Min	Тур.	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250uA	600			٧
ΔBV_{DSS} $/\Delta T_{J}$	Breakdown Voltage Temperature coefficient	I_D =250uA, Reference to 25 $^{\circ}{\mathbb{C}}$		0.7		V /°C
I _{DSS}	Zero gate voltage Drain Current	V_{DS} = 600V, V_{GS} = 0V V_{DS} = 480V, T_{S} = 125 °C			1 10	uA
I _{GSSF}	Gate body leakage current Forward	V _{GS} = 30V, V _{DS} = 0V			100	nA
I _{GSSR}	Gate body leakage current Reverse	V _{GS} = -30V, V _{DS} = 0V			-100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	V _{GS} = V _{DS} , I _D = 250uA	2.5		4.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 3.5A$		4.1	5.0	Ω

Dynamic Characteristics

C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$	200	pF
C _{oss}	output Capacitance	f = 1.0MHz	20	pF
C _{rss}	Reverse Transfer Capacitance	1.000.12	4	pF

Switching Characteristics

Symbol	Items	Conditions	Min	Тур.	Max	Units
t _{d(on)}	Turn-on Delay Time	V = 200V L = 2.0A		10		ns
t _r	Turn-on Rise Time	V_{DD} = 300V, I_{D} = 2.0A R_{G} = 25 Ω		25		ns
$t_{\text{d(off)}}$	Turn-off Delay Time	(note 4,5)		25		ns
t _f	Turn-off Fall Time	(note 4,5)		30		ns
Qg	Total Gate Charge	V _{DS} = 480V, I _D = 2.0A		9		nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		1.5		nC
Q _{gd}	Gate-Drain Charge	(note 4,5)		4.0		nC

Drain-Source Diode Characteristics

Is	Maximum Continuous Drain-Source diode Forward Current			2.0	Α
I _{SM}	Maximum Pulse Drain-Source diode Forward Current			8.0	Α
V _{SD}	Drain-Source diode Forward voltage	$V_{GS} = 0V, I_{s} = 2.0A$		1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V, I_{s} = 2.0A$	230		nS
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 \text{ A/us}$ (note 4)	1.0		uC

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 60mH, I_{AS} = 2.0A, V_{DD} = 50V, R_G = 25 Ω , starting T_J = 25 $^{\circ}$ C
- 3. $I_{SD} \le 2.0 A$, di/dt $\le 200 A/us$, $V_{DD} \le BV_{DSS}$, starting $T_J = 25 \, ^{\circ}\!\! C$
- 4. Pulse Test : Pulse width ≤ 300us, Duty cycle ≤ 2%
- 5. Essentially independent of operation temperature

SFF2N60-KR

Fig. 1 On-Region Characteristics

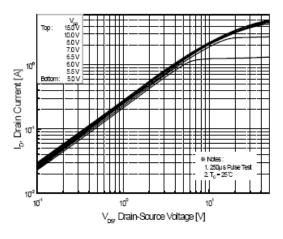


Fig. 3 Breakdown Voltage Variation vs
Temperature

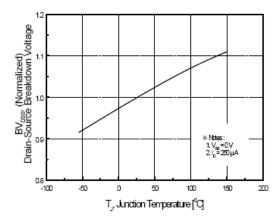


Fig. 5 Maximum Safe Operation Area

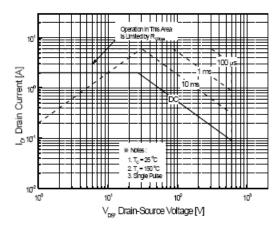


Fig. 2 On-Resistance variation vs Drain Current And gate Voltage

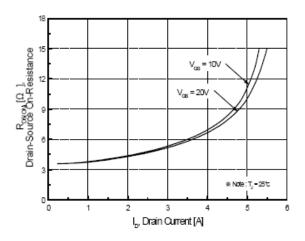


Fig 4. On-Resistance Variation vs Temperature

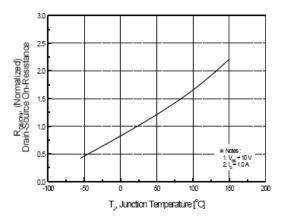
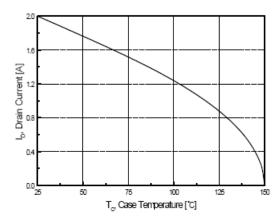
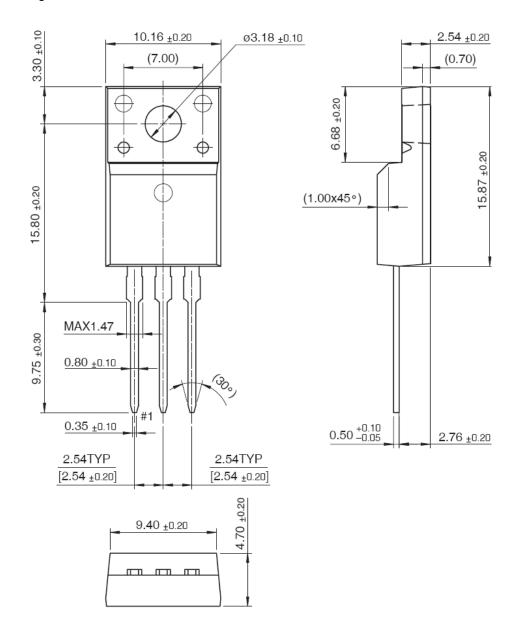




Fig. 6 Maximum Drain Current vs Case Temp.

4/5

TO-220F Package Dimension

ℐ